UCL - Urban Computing Lab

Federal University of Bahia (UFBA)

About us

The Urban Computing Lab (UCL) research group at PGCOMP/UFBA focuses on orchestrating data generated by large urban centers to facilitate and improve people's quality of life. To achieve this goal, orchestration takes place through the acquisition, integration and analysis of a large volume of data that is continuously generated by various sources, such as sensors, devices, vehicles, houses, buildings and people. In addition, data orchestration in Urban Computing uses sensing technologies and large-scale computing infrastructures (Edge and Cloud) to process machine learning methods.

about
shape

Our group Research Interests

shape shape

Smart Mobilty

Public transportation, vehicular ad hoc network, mobility as a service (MobaaS).

shape shape

Emergency Systems

Emergencies in smart cities, connected emergency services.

shape shape

Smart Grids

Efficient use of resources for energy production, transmission, distribution and consumption.

shape shape

Quantum Computing

Harnessing quantum mechanics to solve problems beyond the reach of classical computers.

shape shape

Federated learning

Collaborative model training across multiple decentralized devices or servers.

Meet Our Lab Director

Maycon Leone Peixoto, Lab Director

Maycon Leone Peixoto, PhD

Principal Investigator / Lab Coordinator

"Maycon Peixoto received the master’s and Ph.D. degrees in computer science from the University of São Paulo (USP), Brazil, in 2008 and 2012, respectively. He conducted postdoctoral research at the University of Campinas (UNICAMP), Brazil, in 2020. He was a visiting professor at the University of Toronto in Canada during the 2023-2024 period. He is currently a Professor at the Department of Computer Science, Federal University of Bahia (UFBA). His main research interests include urban computing, smart grids, vehicular ad-hoc networks, performance evaluation, cloud, edge, and fog computing."

Our Team

Team
Matheus

Master's Degree

Team
Wesley Souza

PhD Candidate

Team
Leonan Oliveira

Master's Degree

Team
Mariese Conceição

PhD Candidate

Team
Adriano Maia

PhD Candidate

Team
Elivelton Rangel

PhD Candidate

Team
Marcus Freire

PhD Candidate

Team
João Victor

Master's Degree Candidate

Team
Lucas Mascarenhas

Master's Degree Candidate

Team
Giselly Reis

Master's Degree Candidate

Team
Ariel Menezes

PhD Student

Team
Isys Sant'Anna

Master's Degree Candidate

Team
Gustavo Falcão

PhD Student

Team
Gabriel Borges

Master's Degree Candidate

shape

Papers

2025

BARBOSA, M. (2025) “FOCCA: Fog-cloud continuum architecture for data imputation and load balancing in Smart Grids.”
BARROS, E. (2025) “Energy management in smart grids: An Edge-Cloud Continuum approach with Deep Q-learning.”
BITTENCOURT, J.C.N. (2025) “On the spatiotemporal knowledge-driven vulnerability assessment of urban areas: A clustering-based approach.”
CORREA, D. (2025) “Evaluating Multi-Label Machine Learning Models for Smart Home Environments.”
DA SILVA, C.J.N. (2025) “TinyFed: Lightweight Federated Learning for Constrained Devices.”
FERREIRA, J. (2025) “Leading the Way: Reducing network traffic in vehicular Ad Hoc networks through cluster leader algorithms.”
FREIRE, M. (2025) “Clear data, clear roads: Imputing missing data for enhanced intersection flow of connected autonomous vehicles.”
FREIRE, M. (2025) “RanA: Uma Abordagem Híbrida para QKD BB84 com Expansão e Encapsulamento de Chave”, in.
MAIA, A. (2025) “Q-Edge: Leveraging Quantum Computing for Enhanced Software Engineering in Vehicular Networks”, in.
MELO, T. (2025) “A New Perspective on Key Expansion for QKD BB84: The RanA Model”, in.
MOTA, E. and PEIXOTO, M.L.M. (2025) “ArchW3: An adaptive blockchain wallet architecture for Web3 applications.”
SEIXAS, N. (2025) “Bridging the Cost Gap: A Comprehensive Analysis of CAPEX and OPEX for Smart Home Transition from a Provider’s Perspective”, in.

2024

CAMPOS, D. (2024) “Designing, Implementing, and Testing AI-Oriented Smart Home Applications: Challenges and Best Practices”, in.
CRUZ, D.T. (2024) “Software Development Practices and Tools for University-Industry R&D projects”, in.
FERREIRA, I.F., PEIXOTO, M.L.M. and FIGUEIREDO, G.B. (2024) “Fairness-oriented multicast routing for distributed interactive applications.”
HENRIQUE SOUZA SILVA, C. (2024) “RESTGuardian: a system for controlling personal and sensitive data in REST API responses”, in.
JR, J. (2024) “Unleashing the Future of Smart Homes: A Revelation of Cutting-Edge Distributed Architecture”, in.
MARTINS, L. (2024) “A Case Study of Smart Home Development.”
MOTA, E. (2024) “A Self-Configuration Framework for Balancing Services in the Fog of Things.”
OLIVEIRA, L.T. (2024) “Enhancing modular application placement in a hierarchical fog computing: A latency and communication cost-sensitive approach.”
PEIXOTO, M.L.M. (2024) “Quantum Edge Computing for Data Analysis in Connected Autonomous Vehicles”, in.
RAMPRASAD, B. (2024) “StreamBucket: In-Network Adaptation for Late-Binding Stream Processing Systems”, in.
VIEIRA, C.C.A. (2024) “RAaaS: Resource Allocation as a Service in multiple cloud providers.”

2023

ARAUJO, G.B., PEIXOTO, M. and SAMPAIO, L.N. (2023) “A comprehensive and configurable simulation environment for supporting vehicular named-data networking applications.”
BARBOSA, M.T.M. (2023) “Q-balance: An Approach for Balancing Data Imputation Tasks on Edge resources of a Smart Grid”, in.
PAULA, A.D.O. (2023) “Melhorando a Integridade de Sistemas de Automação e Comunicação em Smart Grids - Uma Arquitetura de Combate a Ciberataques”, in.
PEIXOTO, M. (2023) “FogJam: A Fog Service for Detecting Traffic Congestion in a Continuous Data Stream VANET.”
SANTOS, J. (2023) “Fog environment proposal to reduce energy consumption on public roads in smart cities”, in.
SILVA, H. (2023) “Avaliação de Desempenho de Estratégias de Virtualização Alternative Title: Performance Evaluation of Virtualization Strategies”, in.

2022

ARAUJO, G., PEIXOTO, M. and SAMPAIO, L. (2022) “NDN4IVC”, in.
COSTA, D.G. (2022) “A Survey of Emergencies Management Systems in Smart Cities.”
PAULA, A.D.O. (2022) “STRAYER: A Smart Grid adapted automation architecture against cyberattacks.”
PEIXOTO, M.L.M., GENEZ, T.A.L. and BITTENCOURT, L.F. (2022) “Hierarchical Scheduling Mechanisms in Multi-Level Fog Computing.”
SEPULVENE, L. (2022) “Performance Evaluation of Machine Learning Techniques for Fault Diagnosis in Vehicle Fleet Tracking Modules.”

2021

ARAUJO, G.B., PEIXOTO, M.L.M. and SAMPAIO, L.N. (2021) “NDN4IVC: Um Arcabouço para Simulação e Experimentação de Aplicações em Redes Veiculares de Dados Nomeados”, in.
BARROS, E.B. (2021) “KaspaFog: uma abordagem na névoa para o gerenciamento de fontes e cargas de eletricidade de uma Microgrid com foco na redução energética”, in.
COIMBRA, D.B. (2021) “Analyzing the quality of local and global multidimensional projections using performance evaluation planning.”
PEIXOTO, M. (2021) “A traffic data clustering framework based on fog computing for VANETs.”
PEREIRA, R.S. (2021) “IoTFogSim: Um Simulador Orientado a Eventos para Avaliação de Aplicações baseadas em IoT-Fog-Cloud”, in.
RANGEL, E.O., COSTA, D.G. and PEIXOTO, M.M.L. (2021) “An Optimization Approach for Emergency Vehicles Dispatching and Traffic Lights Adjustments in Response to Emergencies in Smart Cities”, in.
RODRIGUES, D.O. (2021) “Exploring Hybrid-Multimodal Routing to Improve User Experience in Urban Trips.”
SANTOS, P.V.G. (2021) “Recommender Systems Evaluator: A Framework for Evaluating the Performance of Recommender Systems”, in.

2020

DA COSTA, J.B.D. (2020) “MORFEU: Mecanismo baseado em Otimização Combinatória para Alocação de Tarefas em Nuvens Veiculares”, in.
LADEIRA, L.Z. (2020) “CERVA: Roteamento Contextual para Veículos com Risco Espaço-temporal”, in.
LOBATO, W. (2020) “A Cache Strategy for Intelligent Transportation System to Connected Autonomous Vehicles”, in.
PEIXOTO, M.L.M. (2020) “Exploiting Fog Computing with an Adapted DBSCAN for Traffic Congestion Detection System”, in.
RONDON, L.B. (2020) “Protocolo baseado em Geometria Computacional para Descoberta de Cache em Redes Veiculares de Dados Nomeados”, in.
RONDON, L.B. (2020) “Towards Improved Vehicular Information-Centric Networks by Efficient Caching Discovery.”

2019

BARBOSA, M.T.M. (2019) “Energesis: Fog Smart Meter para Hospedagem Compartilhada”, in.
BARROS, E.B.C. (2019) “Fog Computing Model to Orchestrate the Consumption and Production of Energy in Microgrids.”
LEITE FILHO, D.M. (2019) “A cloud computing price model based on virtual machine performance degradation.”
MACIEL PEIXOTO, M.L. (2019) “Multidimensional Projections Analysis Using Performance Evaluation Planning”, in.

2018

BARBOSA, M.T. (2018) “Imputação de dados faltantes no ambiente de monitoramento de consumo em Smart Grids”, in.
BARROS, E. (2018) “A Fog Model for Dynamic Load Flow Analysis in Smart Grids”, in.
BARROS, E.B.C. (2018) “Utilizando Fog para a Análise do Fluxo de Carga Dinâmico nas Smartgrids”, in.
BATISTA, B.G. (2018) “Architecture for Internet of Things Environment Management with Quality of Service Assurance”, in.
BATISTA, B.G. (2018) “Heuristic Performance Evaluation for Load Balancing in Cloud”, in.
BATISTA, B.G. (2018) “Security Overhead on a Service with Automatic Resource Management: A Performance Analysis.”
BATISTA, E. (2018) “Load Balancing in the Fog of Things Platforms Through Software-Defined Networking”, in.
CALDEIRA, I.D.B. (2018) “Recuperação Ciente de QoS e Sensível ao Contexto: Uma Heurística de Tolerância a Falhas para Redes de Backbone”, in.
FERREIRA, R.S. (2018) “Evaluation of Performance Saturation Using the Hadoop Framework”, in.
MORAIS, N.B. (2018) “Performance Evaluation of Heuristics for Cloud Workload Balancing”, in.
MOTA, E., COIMBRA, D. and PEIXOTO, M. (2018) “Cartola FC Data Analysis”, in.
OLIVEIRA, L. (2018) “Arquitetura baseada em Computação em Névoa para Sistemas de Gerenciamento Inteligente de Água”, in.
PEIXOTO, M. (2018) “Analysis of gap filling algorithms to smart surveillance environment”, in.
PEIXOTO, M.L. (2018) “Data Missing Problem in Smart Surveillance Environment”, in.

2017

ARAUJO, M.R. (2017) “Alocação dinâmica de largura de banda com predição dos próximos GRANT em redes Long-Reach PON”, in.
BATISTA, B.G. (2017) “A QoS-driven approach for cloud computing addressing attributes of performance and security.”
FERREIRA, C.H.G. (2017) “A low cost workload generation approach through the cloud for capacity planning in service-oriented systems”, in.
LECOMTE, G. (2017) “Gap Filling of Missing Streaming Data in a Network of Intelligent Surveillance Cameras”, in.
LEITE, D.M. (2017) “The influence of resource allocation on cloud computing performance”, in.
MORAIS, N.B. (2017) “Avaliação de Algoritmos de Balanceamento de Carga para Ambientes em Nuvem”, in.
PINTO, A.A. (2017) “A Performance Evaluation of an Automatic Web Services Composition System”, in.

2016

ALVES, D.C. (2016) “CM Cloud Simulator: A Cost Model Simulator Module for Cloudsim”, in.
LEITE, D.M. (2016) “A utilização da função affinity na manutenção de QoS nos serviços de nuvem: uma comparação de desempenho entre os virtualizadores Xen e KVM”, in.
LEONE, M. (2016) “Predictive Dynamic Algorithm: An Approach toward QoS-Aware Service for IoT-Cloud Environment”, in.
OLIVEIRA, M.R.S. (2016) “Tratamento de Valores Ausentes na Alocação de Máquinas Virtuais para a Computação em Nuvem”, in.
RIBEIRO, J.B. (2016) “Avaliação de Desempenho de Técnicas de Migração de Máquinas Virtuais para o Ambiente de Computação em Nuvem.”

2014

FERREIRA, C.H.G. (2014) “Identificação de gargalos de desempenho em ambientes virtuais para uso em computação em nuvem”, in.

2013

CANDIDO, P.G.L. (2013) “Alocação Proativa de Recursos Virtualizados Aplicada à Computação em Nuvem”, in.
FERREIRA, C.H.G. (2013) “Avaliação de desempenho de virtualizadores aplicados a computação em nuvem”, in.
LEITE, D. (2013) “Avaliação de desempenho em ambiente computacional voltado para computação em nuvem com foco em aspectos de planejamento de capacidade.”
LEITE, D.M. (2013) “P2P Routing in the Metascheduler Architecture to provide QoS in Cloud Computing.”
MENDONCA, A.J.L. (2013) “Balanceamento de carga em servidores utilizando o proxy reverso”, in.
PRAZERES, C.V.S. and PEIXOTO, M.L.M. (2013) “A Multimodal Interface for the Discovery and Invocation of Web Services.”
RIBEIRO, J.B. (2013) “Avaliação de Desempenho de Funções Hash”, in.
RIBEIRO, J.B. (2013) “Avaliação de desempenho de técnicas de migração de máquinas virtuais”, in.
ROSA, M. (2013) “Avaliação de Desempenho de um Roteador Wireless”, in.
SA, C.C.A., RESENDE, E.C. and PEIXOTO, M.L.M. (2013) “Avaliação de Desempenho dos Algoritmos de Mineração de Dados KNN e SVM”, in.

2012

CANDIDO, P.G.L. and PEIXOTO, M.L.M. (2012) “Alocação de Recursos para Computação em Nuvem Aplicada ao MACC”, in.
LEITE, D.M. (2012) “Performance Evaluation of Virtual Machine Monitors for Cloud Computing”, in.
RIBEIRO, G.S. and PEIXOTO, M.L.M. (2012) “Uso Integrado de Computação em Nuvem e Google Android O.S. no Processo de Descoberta de Conhecimento”, in.

2011

PEIXOTO, M.L.M. (2011) “Gerenciamento de Máquinas Virtuais em um Cloud Multimídia por meio do Metaescalonamento”, in.

2010

KUEHNE, B.T. (2010) “Dynamic Web Service Composition Middleware: A New Approach for QoS Guarantees”, in.
PEIXOTO, M.L.M. (2010) “A Metascheduler Architecture to provide QoS on the Cloud Computing”, in.

2009

MONACO, F.J., PEIXOTO, M.L.M. and NERY, M. (2009) “An orthogonal real-time scheduling architecture for responsiveness QoS requirements in SOA environments”, in.
PEIXOTO, M.L.M., SANTANA, M.J. and SANTANA, R.H.C. (2009) “A P2P Hierarchical Metascheduler to Obtain QoS in a Grid Economy Services”, in.

2008

PEIXOTO, M.L.M. (2008) “Arquitetura de Escalonamento Ortogonal de Tempo-Real para garantias de QoS em Servidores Web”, in.

2007

MONACO, F.J., Cheng, X.S. and PEIXOTO, M.L.M. (2007) “A Tool for Statistical Analysis of Navigational Modelling for Web Site Personalization and Reengineering”, in.
PEIXOTO, M.L.M., TOTT, R.F. and MONACO, F.J. (2007) “Política de Escalonamento de Tempo-Real para Garantia de QoS Absoluta em Cluster de Servidores Web Heterogêneos”, in.